MINIMUM SPANNING TREE
AIM:
To find the minimum cost spanning tree in a graph using Prims algorithm.
ALGORITHM:
Step 1 : Start the process.
Step 2: Create two classes as POINT and ARC.
Step 3: Define a Graph class which represents the collection of Point and Arc objects.
Step 4: Write a method to find a minimum cost spanning tree in a graph.
Step 5: Enter the Number of nodes, source node, destination node, weight for the corresponding edge.
Step6: Repeat step5 until all vertices, edges and weight are defined.
Step 7: The edge does not form a cycle in the graph, for Minimum Spanning Tree.
Step 8: Thus set of edges is connected and form a Minimum Spanning Tree.
Step 9: Display the adjacency matrix for the graph and the minimum total path of all the edges.
Step 10: Stop the process.
PROGRAM:
#include<iostream.h>
#include<conio.h>
#define MAX 50
#define TRUE 1
#define FALSE 0
#define MAXINT 250
class node
{
public:
int no;
node()
{}
node (int a)
{
no = a;
}
};
class arc
{
public:
int adj;
int weight;
arc()
{}
arc(int a)
{
adj = a;
}
};
class graph
{
public:
node nodes[MAX];
arc arcs[MAX][MAX];
graph(int n)
{
for(int i=1;i<=n;i++)
{
nodes[i].no = 0;
for(int j=1;j<=n;j++)
arcs[i][j].adj = FALSE;
}
}
void join(node n1, node n2, int w)
{
arcs[n1.no][n2.no].adj = w;
arcs[n2.no][n1.no].adj = w;
}
void displayadj(int n)
{
cout<<"\n The adjacency matrix....";
cout<<endl;
for(int i = 1; i<=n; i++)
{
for(int j = 1; j<=n;j++)
cout<<"\t"<<arcs[i][j].adj;
cout<<endl;
}
cout<<endl;
}
void shortpath(int n)
{
int lcost[20];
int clost[20],i,j,k,min;
for(i = 2; i<=n;i++)
{
lcost[i]=arcs[1][i].adj;
clost[i]=1;
}
cout<<"\n Minimum cost spanning tree edges are:\n";
for(i=2;i<=n;++i)
{
min=lcost[2];
k=2;
for(j=3;j<=n;++j)
if(lcost[j]<min)
{
min = lcost[j];
k=j;
}
cout<<"\n"<<k<<"<->"<<clost[k];
lcost[k]=MAXINT;
for(j=2;j<=n;++j)
if((arcs[k][j].adj<lcost[j])&&(lcost[j]<MAXINT))
{
lcost[j]=arcs[k][j].adj;
clost[j]=k;
}
}
}
};
int main()
{
int n;
clrscr();
cout<<"\n Enter total number of nodes...";
cin>>n;
graph g(n);
cout<<"\n Assigning number for each node...";
for(int i = 1;i<=n;i++)
g.nodes[i].no=i;
char ch ='y';
int w;
do
{
node a,b;
cout<<"\n Create path b/w the nodes";
cout<<"\n Enter the source node...";
cin>>a.no;
cout<<"\n Enter the destination node...";
cin >>b.no;
cout<<"\n Enter the weight:";
cin>>w;
g.join(a,b,w);
cout<<"\n Want to continue...[y]es or [n]:";
cin>>ch;
}while(ch=='y');
g.displayadj(n);
g.shortpath(n);
cin>>n;
getch();
return 0;
}
OUTPUT:
Enter total number of nodes...4
Assigning number for each node...
Create path b/w the nodes
Enter the source node...1
Enter the destination node...2
Enter the weight:1
Want to continue...[y]es or [n]:y
Create path b/w the nodes
Enter the source node...1
Enter the destination node...4
Enter the weight:2
Want to continue...[y]es or [n]:y
Create path b/w the nodes
Enter the source node...1
Enter the destination node...3
Enter the weight:2
Want to continue...[y]es or [n]:y
Create path b/w the nodes
Enter the source node...2
Enter the destination node...4
Enter the weight:4
Want to continue...[y]es or [n]:y
Create path b/w the nodes
Enter the source node...2
Enter the destination node...3
Enter the weight:5
Want to continue...[y]es or [n]:y
Create path b/w the nodes
Enter the source node...3
Enter the destination node...4
Enter the weight:3
Want to continue...[y]es or [n]:n
The adjacency matrix....
0 1 2 2
1 0 5 4
2 5 0 3
2 4 3 0
Minimum cost spanning tree edges are:
2<->1
3<->1
4<->1
RESULT:
Thus the program to find the minimum cost spanning tree in a graph using Prims algorithm was executed.
0 comments:
Post a Comment